1. 如何判断对象可被GC(Garbage Collection)
1.1. 引用计数算法
在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。这就是引用计数算法。
但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存。
一个原因是引用计数无法解决互相引用的问题,比如objA.instance=objB及objB.instance=objA
,在这种情况下由于互相引用,计数器不会为零,也就无法被GC。
1.2. 可达性分析算法
可达性算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(ReferenceChain),如果某个对象到GCRoots间没有任何引用链相连,或者用图论的话来说就是从GCRoots到这个对象不可达时,则证明此对象是不可能再被使用的。
在Java技术体系里面,固定可作为GCRoots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
- 在方法区中常量引用的对象,譬如字符串常量池(StringTable)里的引用。
- 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- 所有被同步锁(synchronized关键字)持有的对象。
- 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。
- 其他
2. 引用的分类
在JDK1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(StronglyReference)、软引用(SoftReference)、弱引用(WeakReference)和虚引用(PhantomReference)4种,这4种引用强度依次逐渐减弱。
- 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“
Object obj=new Object()
”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。 - 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK1.2版之后提供了SoftReference类来实现软引用。
- 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,**被弱引用关联的对象只生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。**在JDK1.2版之后提供了WeakReference类来实现弱引用。
- 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK1.2版之后提供了PhantomReference类来实现虚引用。
3. 垃圾收集算法
3.1. 分代收集理论
- 弱分代假说(WeakGenerationalHypothesis):绝大多数对象都是朝生夕灭的。
- 强分代假说(StrongGenerationalHypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。
- 跨代引用假说(IntergenerationalReferenceHypothesis):跨代引用相对于同代引用来说仅占极少数。
前2个分代假说奠定了多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。
在Java堆划分出不同的区域之后,垃圾收集器才可以每次只回收其中某一个或者某些部分的区域——因而才有了“MinorGC”“MajorGC”“FullGC”这样的回收类型的划分;也才能够针对不同的区域安排与里面存储对象存亡特征相匹配的垃圾收集算法——因而发展出了“标记复制算法”“标记清除算法”“标记整理算法”等针对性的垃圾收集算法。
第3个分代假说可根据前两条假说逻辑推理得出的隐含推论:存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,RememberedSet),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生MinorGC时,只有包含了跨代引用的小块内存里的对象才会被加入到GCRoots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。
部分名词解释:
- 新生代收集(MinorGC/YoungGC):指目标只是新生代的垃圾收集。
- 老年代收集(MajorGC/OldGC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。
- 混合收集(MixedGC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。
- 整堆收集(FullGC):收集整个Java堆和方法区的垃圾收集。
3.2. 标记-清除算法
标记-清除算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。
标记-清除算法主要缺点有两个:
- 执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
- 内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作
3.2. 标记-复制算法
标记-复制算法将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效。
不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。
但是,Appel式回收不能保证另一块Survivor可以承载所有存活对象,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次MinorGC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。
3.3. 标记-整理算法
标记-整理算法的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。
4. HotSpot的算法细节实现
4.1. 检查GC Roots引用链:根节点枚举
可达性算法中,我们从GC Roots集合找引用链,这个过程需要全部检查绝非易事。
迄今为止,所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,也就是需要“Stop The World”。
根节点枚举始终还是必须在一个能保障一致性的快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。这是导致垃圾收集过程必须停顿所有用户线程的其中一个重要原因。
当用户线程停顿下来之后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得到哪些地方存放着对象引用的,在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。
4.2. 快速定位哪些指令存在引用:安全点
在OopMap的协助下,HotSpot可以快速准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说导致OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外存储空间,这样垃圾收集伴随而来的空间成本就会变得无法忍受的高昂。
实际上HotSpot也的确没有为每条指令都生成OopMap,只是在“特定的位置”记录了这些信息,这些位置被称为安全点(Safepoint)。有了安全点的设定,也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。因此,安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过分增大运行时的内存负荷。安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。
对于安全点,另外一个需要考虑的问题是,如何在垃圾收集发生时让所有线程(这里其实不包括执行JNI调用的线程)都跑到最近的安全点,然后停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension)
- 抢先式中断(Preemptive Suspension)不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。
- 主动式中断(Voluntary Suspension)的思想是当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象
4.3. 安全“点”延伸到“段”:安全区域
安全点机制保证了程序执行时,在不太长的时间内就会遇到可进入垃圾收集过程的安全点。但是,程序“不执行”的时候(没有分配处理器时间),典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域(SafeRegion)来解决。
安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。
当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。
4.4. 解决跨代引用问题:记忆集与卡表
在分代收集理论中,为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为“记忆集(Remembered Set)”的数据结构,避免把整个老年代加进GC Roots的扫描范围。
记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。
记忆集可以有多个精度:
- 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
- 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
- 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。
卡表,是一个具体的记忆集实现,定义了记忆集的记录精度、与堆内存的映射关系等。
卡表可以是一个字节数组(HotSpot虚拟机是这样做的);
CARD_TABLE[thisaddress >> 9] = 0;
字节数组CARD_TABLE
的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(CardPage)。一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可以看出HotSpot中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如果卡表标识内存区域的起始地址是0x0000的话,数组CARD_TABLE的第0、1、2号元素,分别对应了地址范围为0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF的卡页内存块。
一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GCRoots中一并扫描。
4.5. 卡表的维护:写屏障
在HotSpot虚拟机里是通过写屏障(WriteBarrier)技术维护卡表状态的。
这里的“写屏障”需与解决并发乱序执行问题中的“内存屏障”区分开来,避免混淆。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。
维护卡表状态伪代码:
func xxx {
// 引用字段赋值
......
// 写后屏障,在这里完成卡表状态更新
}
缺点:
- 写屏障维护卡表带来额外开销
- 伪共享问题(False Sharing):伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。
4.6. 判断对象是否可达:并发的可达性分析
引入三色分析:
- 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
- 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
- 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过
Wilson于1994年在理论上证明了,当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:
- 赋值器插入了一条或多条从黑色对象到白色对象的新引用
- 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。
由此分别产生了两种解决方案:
-
增量更新(Incremental Update)
增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
-
原始快照(Snapshot At The Beginning,SATB)
原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。
以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。
5. 经典垃圾收集器
5.1. Serial收集器
Serial收集器是最基础、历史最悠久的收集器,曾经(在JDK1.3.1之前)是HotSpot虚拟机新生代收集器的唯一选择。Serial收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束(“Stop The World”)。
Serial收集器运行示意图:
事实上,迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方:
- 对于内存资源受限的环境,它是所有收集器里额外内存消耗(Memory Footprint)最小的
- 对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效
5.2. ParNew收集器
ParNew收集器实质上是Serial收集器的多线程并行版本。
除了Serial收集器外,目前只有它能与CMS收集器配合工作。
5.3. Parallel Scavenge收集器
Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。Parallel Scavenge的诸多特性从表面上看和ParNew非常相似,但Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值:
$$ {吞吐量 = \frac{\mathrm{运行用户代码时间}}{\mathrm{运行用户代码时间};+;\mathrm{运行垃圾收集时间}}} $$
Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的
-XX:MaxGCPauseMillis
参,允许的值是一个大于0的毫秒数,收集器将“尽力保证”内存回收花费的时间不超过用户设定值。这是有代价的,比如新生代小一点固然会提升GC速度,但是会导致更频繁的GC。-XX:GCTimeRatio
参数:直接设置吞吐量大小的参数,对应上面的公式。
由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy
值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)。
如果手工优化困难,使用自适应调节策略,配合两个吞吐量,GC时间的参数,也是一个不错的选择。
5.4. Serial Old收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记整理算法。
它也可能有两种用途:
- 在JDK5以及之前的版本中与Parallel Scavenge收集器搭配使用(其实是PS MarkSweep收集器,实现与Serial Old几乎一样)
- 作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。
5.5. Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记整理算法实现。
直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑。
在注重吞吐量或者处理器资源较为稀缺的场合,可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合
5.6. CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。
CMS收集器基于标记-清除算法:
- 初始标记(CMS initial mark)
- 并发标记(CMS concurrent mark)
- 重新标记(CMS remark)
- 并发清除(CMS concurrent sweep)
- 其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。
- 初始标记:仅仅只是标记一下GCRoots能直接关联到的对象,速度很快,Stop The World。
- 并发标记:从GCRoots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;
- 重新标记:为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(并发可达性分析中提到过增量更新),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短,Stop The World。
- 并发清除:清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发运行。
CMS收集器的优点:
- 最耗时的并发标记与并发清除阶段都可以与用户线程一起工作,低停顿
CMS收集器的缺点:
-
并发阶段占用额外处理器资源,影响程序性能
-
无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。
在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。
-
由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。
-
基于“标记-清除算法”,会有大量空间碎片,在无法分配足够大连续空间时会提前出发Full GC
5.7. Garbage First收集器
在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。
G1Mixed GC模式:G1可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大。
G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。
虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型(停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标),是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。
Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。
为了保证并发标记阶段收集线程与用户线程互不干扰地运行,CMS收集器采用增量更新算法实现,而G1收集器则是通过原始快照(SATB)算法来实现的。
G1收集器的运作过程大致可划分为以下四个步骤:
-
**初始标记(Initial Marking):**仅仅只是标记一下GCRoots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行MinorGC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
关于TAMS(Top at Mark Start):G1在GC时,如果有新对象创建,G1为每一个Region设计了两个TAMS的指针,把Region中的一部分空间划分出来,并发GC阶段新建的对象必须要在这两个TAMS指针位置之上,G1在GC时默认这两个地址以上的对象是存活的。与CMS中的“Concurrent Mode Failure”的Full GC类似,如果内存分配速度>GC速度,G1将被迫冻结用户线程,Stop The World + Full GC。
-
并发标记(Concurrent Marking):从GCRoot开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。、
-
最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
-
筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。
G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的。
可以由用户指定期望的停顿时间(参数-XX:MaxGCPauseMillis
)是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡
从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。
CMS与G1的区别:
- 垃圾回收算法角度看,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。CMS是基于“标记-清除”算法实现,可能带来内存碎片。
- 内存占用角度看,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。
- 执行负载上,性能有不一样的表现,根据周志明教授经验,在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间。
6. 低延迟垃圾收集器
衡量垃圾收集器的三项最重要的指标是:
- 内存占用(Footprint)
- 吞吐量(Throughput)
- 延迟(Latency)
一款优秀的收集器通常最多可以同时达成其中的两项。
6.1. Shenandoah收集器
Shenandoah收集器和G1一样使用基于Region的内存布局,但没有像G1一样维护一个记忆集来记录垮Region的引用关系,而是使用“连接矩阵”(Connection Matrix,一张二纬表格,如果Region N有对象指向Region M,就在表格N行M列打一个标记。)的全局数据结构来记录跨Region的引用关系,降低记忆集维护消耗:
- 初始标记(Initial Marking):与G1一样,首先标记与GCRoots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GCRoots的数量相关。
- 并发标记(Concurrent Marking):与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度。
- 最终标记(Final Marking):与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集(CollectionSet)。最终标记阶段也会有一小段短暂的停顿。
- 并发清理(Concurrent Cleanup):这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region(这类Region被称为Immediate Garbage Region)。
- 并发回收(Concurrent Evacuation):**并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用的Region之中。**复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难,Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决。并发回收阶段运行的时间长短取决于回收集的大小。
- 初始引用更新(Initial Update Reference):并发回收阶段复制对象结束后,还需要把堆中所有指向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。初始引用更新时间很短,会产生一个非常短暂的停顿。
- **并发引用更新(ConcurrentUpdateReference):真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。**并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可。
- **最终引用更新(Final Update Reference):**解决了堆中的引用更新后,还要修正存在于GCRoots中的引用。这个阶段是Shenandoah的最后一次停顿,停顿时间只与GCRoots的数量相关。
- 并发清理(Concurrent Cleanup):经过并发回收和引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。
对比测试数据:
6.1. ZGC收集器
ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记整理算法的,以低延迟为首要目标的一款垃圾收集器。
ZGC的Region(在一些官方资料中将它称为Page或者ZPage)具有动态性:
- 动态创建和销毁
- 动态的区域容量大小(小,中,大,大型Region容量不固定)
ZGC收集器有一个标志性的设计是它采用的染色指针技术(Colored Pointer,其他类似的技术中可能将它称为Tag Pointer或者Version Pointer),染色指针是一种将少量额外信息存储在指针上的技术:
- 以往在对象上存储一些额外数据,需要在对象头增加而外的存储字段(比如锁记录)。这种是一个比较自然的方案,缺点在于大多数情况我们是和指针打交道而非指针引用对象本身,无法通过指针看出对象是否移动过,是否存活,这些属性会影响它的存活判定结果。
- ZGC的染色指针,是将这些属性标记直接存在了引用对象的指针上。具体实现方面,操作系统的指针一般会有多余的空闲位不用来寻址,ZGC就是用这部分指针宽度来存储额外信息的。
- ZGC的染色指针在各个操作系统上会有不一样的实现,会受限于操作系统,平台限制,这一部分等待Oracle完善。
- 染色指针可以使得一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理。(染色指针上存放标志,不用整个处理完引用再去判断状态)
- 染色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,设置内存屏障,尤其是写屏障的目的通常是为了记录对象引用的变动情况,如果将这些信息直接维护在指针中,显然就可以省去一些专门的记录操作。
- 染色指针可以作为一种可扩展的存储结构用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。
ZGC的运作过程:
- 并发标记(Concurrent Mark):与G1、Shenandoah一样,并发标记是遍历对象图做可达性分析的阶段,前后也要经过类似于G1、Shenandoah的初始标记、最终标记(尽管ZGC中的名字不叫这些)的短暂停顿,而且这些停顿阶段所做的事情在目标上也是相类似的。与G1、Shenandoah不同的是,ZGC的标记是在指针上而不是在对象上进行的,标记阶段会更新染色指针中的Marked0、Marked1标志位。
- 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)**。重分配集与G1收集器的回收集(Collection Set)还是有区别的,ZGC划分Region的目的并非为了像G1那样做收益优先的增量回收。相反,ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本。因此,ZGC的重分配集只是决定了里面的存活对象会被重新复制到其他的Region中,里面的Region会被释放,而并不能说回收行为就只是针对这个集合里面的Region进行,因为标记过程是针对全堆的。**此外,在JDK12的ZGC中开始支持的类卸载以及弱引用的处理,也是在这个阶段中完成的。
- 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。得益于染色指针的支持,ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”(Self-Healing)能力。这样做的好处是只有第一次访问旧对象会陷入转发,也就是只慢一次,对比Shenandoah的Brooks转发指针,那是每次对象访问都必须付出的固定开销,简单地说就是每次都慢,因此ZGC对用户程序的运行时负载要比Shenandoah来得更低一些。还有另外一个直接的好处是由于染色指针的存在,一旦重分配集中某个Region的存活对象都复制完毕后,这个Region就可以立即释放用于新对象的分配(但是转发表还得留着不能释放掉),哪怕堆中还有很多指向这个对象的未更新指针也没有关系,这些旧指针一旦被使用,它们都是可以自愈的。
- 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,这一点从目标角度看是与Shenandoah并发引用更新阶段一样的,但是ZGC的并发重映射并不是一个必须要“迫切”去完成的任务,因为前面说过,即使是旧引用,它也是可以自愈的,最多只是第一次使用时多一次转发和修正操作。重映射清理这些旧引用的主要目的是为了不变慢(还有清理结束后可以释放转发表这样的附带收益),所以说这并不是很“迫切”。因此,ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图的开销。一旦所有指针都被修正之后,原来记录新旧对象关系的转发表就可以释放掉了。
ZGC的劣势,它能承受的对象分配速率不会太高:
ZGC准备要对一个很大的堆做一次完整的并发收集,假设其全过程要持续十分钟以上(区分并发时间与停顿时间,ZGC立的Flag是停顿时间不超过十毫秒),在这段时间里面,由于应用的对象分配速率很高,将创造大量的新对象,这些新对象很难进入当次收集的标记范围,通常就只能全部当作存活对象来看待——尽管其中绝大部分对象都是朝生夕灭的,这就产生了大量的浮动垃圾。如果这种高速分配持续维持的话,每一次完整的并发收集周期都会很长,回收到的内存空间持续小于期间并发产生的浮动垃圾所占的空间,堆中剩余可腾挪的空间就越来越小了。目前唯一的办法就是尽可能地增加堆容量大小,获得更多喘息的时间。但是若要从根本上提升ZGC能够应对的对象分配速率,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。